

Webinars **Cutaneous Lymphoma** EuroBleedNet Topic on Focus Patients' Organizations

Cutaneous Lymphoma: New therapeutic developments

Rudolf Stadler

Head of Lymphoma Unit Institution University Clinic for Dermatology Johannes Wesling Medical Center ERN-EuroBloodNet subnetwork EORTC/CLTF group City Minden – Country Germany 19. July 2020

Co-funded by the Health Programme of the European Union

European Reference Network for rare or low prevalence complex diseases

Takeda, Kyowa Kirin, Innate pharma, 4Sc, Stemline, miRagen Therapeutics,Inc., Recordati, Galderma, Hoffmann La Roche, Novartis, Abbvie, Janssen, L

1.Therapeutic concepts

2.New therapeutics

3.Future directions

Therapy concept: Key points

- Early-stage mycosis fungoides should be treated with skin-directed therapy.
- In early-stage mycosis fungoides there may be periods of 'expectant therapy' when no treatment is preferred.
- In patients with advanced stage mycosis fungoides or Sézary syndrome, systemic treatments may be considered first line.
- In advanced stage disease where life expectancy may be severely reduced allogeneic haematopoietic stem cell transplantation may be considered
 - A holistic approach to patient care with consideration of health-related quality of life is essential, and symptomatic relief for pain, itch, insomnia and depression may be needed.

*

Therapy concept: basic principles

- Avoid cytotoxic therapies as long as possible
- Give skin care with emollients, reducing bacterial colonization!
- Treat additional symptoms
 e.g. pruritus
- Use standard treatments correctly! E.g. PUVA and systemic therapies
- Think about maintenance treatment

Hematological Diseases (ERN EuroBloodNet) • Keep in close contact with your physician!

Treatment strategies depend on the diagnosis and the stage of the disease

MF	MF	MF	MF	SS
Stage 1A-IIA	Stage IIB	Stage III	Stage IV	Stage IVA1
Expectant policy Topical steroids Nb –UVB, PUVA Chlormethine gel Bexarotene gel ^a Imiquimod ^b Local RT	SDT + local RT, retinoids, IFNα, TSEBT	SDT + retinoids, IFNα; ECP ± IFNα, retinoids Low dose MTX	Gemcitabine Liposomal encapsulated doxorubicin Brentuximab vedotin	ECP ± IFNα, Retinoids Prednisone + chlorambucil Low-dose MTX Mogamulizumab
SDT + retinoids, IFN α ; TSEBT	Gemcitabine, Liposomal doxorubicin Brentuximab vedotin Combination Cht, AlloSCT	TSEBT Mogamulizumab	Combination ChT AlloSCT	Low dose alemtuzumab Gemcitabine Liposomal doxorubicin Combination ChT AlloSCT

Avoid progression of the disease!

^a Not approved in Europe but FDA approved in CTCL; ^b Not approved in CTCL

complex diseases

Network Hematological Diseases (ERN EuroBloodNet)

for rare or low prevelence AlloSCT, allogeneic stem cell therapy; Cht, chemotherapy; ECP, extracorporeal photochemotherapy; IFN, interferon; SDT, skin-directed therapy; RT, radiotherapy; TSEBT, total skin electron beam therapy.

Patients' Org EuroBleedNet Topic on Focus

Webinars

Cutaneous Lymphoma

Trautinger F, et al. Eur J Cancer. 2017;77:57-74. Willemze R, et al. Ann Oncol. 2018;29:iv30-iv40.

Bagot M, Stadler R. Cutaneous lymphoma. In: Kang S, et al. editors. Fitzpatrick's Dermatology. 9th ed. USA: McGraw Hill; 2019. Ch.119.

Skin directed treatment responses to topical therapies in CTCL

Treatment	Study (N)	Study design	Stage	Response Rate
Topical steroids Class I-III	Zackheim et al 1998 (n = 79)		T1 and T2 Patch/plaque	T1: ORR 94%, CR 63%, PR 31% T2: ORR 82%, CR 25%, PR 57%
Chlormethine solution	Vonderheid et al 1989 (n = 331)	Retrospective	I-IV or Sézary syndrome	T1: CR 80% T2: CR 62%
Chlormethine Gel	Lessin et al 2013 (n = 260)	Randomized controlled trial	IA –IIA	ORR 58.5% vs 47.7% CR 13.8% vs 11.5% PR 44.6% vs 36.2%
Bexarotene Gel	Heald et al 2003 (n = 50)	Multinational, open-label, Phase III	IA-IIA	ORR 54%, CR 10%, PR 44%
Resiquimod	Rook et al 2015 (n = 12)	Open Label Phase I	ΙΑ-ΙΙΑ	ORR 75%, CR 33%, PR 42%

European Management of chlormethine gel treatment in

leference mycosis fungoides patients in two German skin

Network lymphoma centers Ulrike Wehkamp1, Marion Jost1, Janika Gosmann2,

for rare or low prevalence To The Grote1, Michaela Bernard2, Rudolf Stadler2 JDDG 2021

• Zackheim HS, et al. Arch Dermatol. 1998;134:949-54. Lessin SR, et al. JAMA Dermatol. 2013;149:25-32.

• Heald P, et al. J Am Acad Dermatol. 2003;49:801-15. Rook AH, et al. Blood. 2015;126:1452-61. Vonderheid EC, et al. J Am Acad Dermatol. 1989;20:416-28.

Current systemic treatments in advanced MF/SS

Immunomodulators

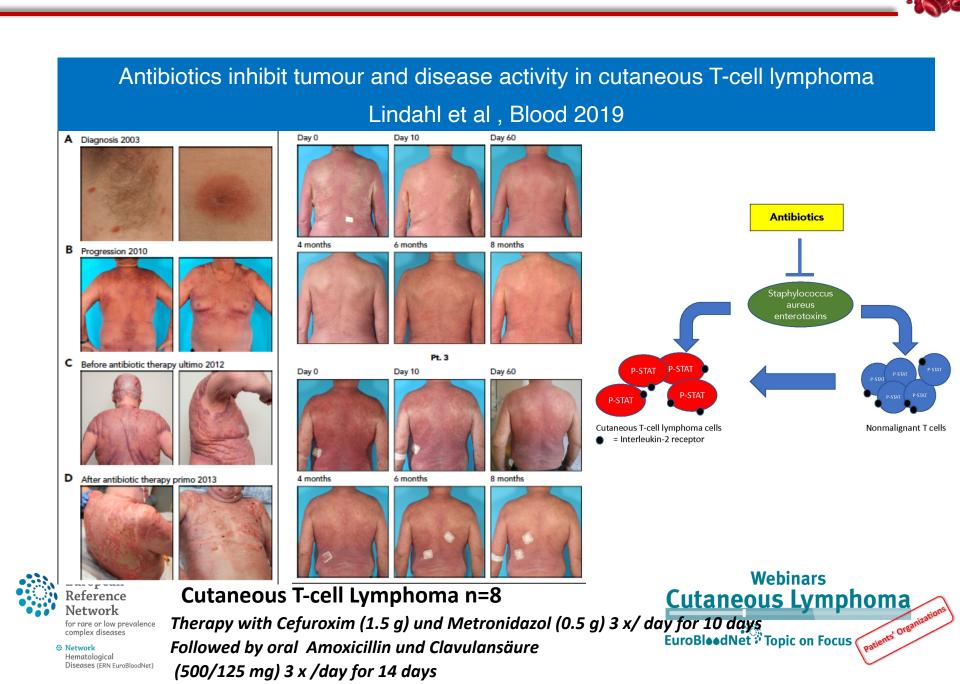
- Rexinoid, Bexarotene; Retinoids Acitretin
- Interferon, peg. Interferon
- Extracorporal Photopheresis

Radiotherapy

- TSEB and local
- Antibody based therapeutics
- Brentuximab vedotin
- Mogamulizumab

HDAC inhibitors

Diseases (ERN EuroBloodNet)


> Chemotherapy

- Gemcitabine
- PEG Doxorubicine
- CHOP and CHOP-like
- Allogeneic stem cell transplantation Webinars

Trautinger F, et al. Eur J Cancer. 2017;77:57-74

EuroBleedNet, Topic on Focus

Cutaneous Lymphoma

Antibody-based Therapies

Functional Classifikation of Antibody-based Therapies				
Funktion	Target			
Tumorcell-"Killing"	CD2, CD3, CD4, CD25, CD30, CD47, CD52, CCR4, KIR3DL2			
T-cell-activation	PD-1, <mark>PD-L1</mark> , CTLA-4, CD137, OX40			
Tumor-Micromilieu	CD25, PD-1, PD-L1, CD137, OX40, STAT3			
Immunpriming	CD40, CD137			

Antibody (modified) based therapies for cutaneous T-cell-Lymphoma

Brentuximab Vedotin Mogamulizumab Alemtuzumab

Lacutamab (KIR3DL2)

Atezolizumab

Final data from the phase 3 ALCANZA study: brentuximab vedotin versus physician's choice in patients with CD30-positive cutaneous T-cell lymphoma

Julia Scarisbrick,¹ Steven M. Horwitz,² Reinhard Dummer,³ Sean Whittaker,⁴ Madeleine Duvic,⁵ Youn H. Kim,⁶ Pietro Quaglino,⁷ Pier Luigi Zinzani,⁸ Oliver Bechter,⁹ Herbert Eradat,¹⁰ Lauren Pinter-Brown,¹¹ Oleg Akilov,¹² Larisa Geskin,¹³ Jose Sanches,¹⁴ Pablo Ortiz-Romero,¹⁵ Michael Weichenthal,¹⁶ David Fisher,¹⁷ Jan Walewski,¹⁸ Judith Trotman,¹⁹ Kerry Taylor,²⁰ Stephane Dalle,²¹ Rudolph Stadler,²² Julie Lisano,²³ Lisa Brown,²³ Maria Corinna Palanca-Wessels,²³ Veronica Bunn,²⁴ Meredith Little,²⁴ H. Miles Prince²⁵

¹⁰Department of Dermatology, University Hospital Birmingham, Birmingham, UK; ²⁰Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ³⁰Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; ⁴St John's Institute of Dermatology, Guys and St Thomas NH5 Foundation Trust, London, UK; ⁵The University of Turin, Turin, Tairy; ⁸Institute of Heamatology, Clustersity of Dermatology, Stanford University of Cancer Institute, Stanford, CA, USA; ³⁰Department of Medical Sciences, Dermatologic Clinic, University of Turin, Turin, Tairy; ⁸Institute of Heamatology, University of Bolgna, Bolgna, Italy; ⁹Department of General Medical Oncology, University Hospitals Leuven, KU Leuven, Belgium; ¹⁰Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ¹¹Chao Family Comprehensive Cancer Center, University of SoB Paulo Medical School, São Paulo Medical School, University Complutense, Madrid, Spain; ¹⁴Department of Dermatology, University Hospital 12 de Octubre, Institute i+12 Medical School, University Complutense, Madrid, Spain; ¹⁴Department of Dermatology, University Hospital, UNSA; ¹⁴Department of Medical School, University of Sub Result, ¹⁴Department of Schleswig-Holstein, Kiel, Germany; ¹⁴Department of Medical School, University of Sub Result, ¹⁴Department of Dermatology, University Hospital, UNSA; ¹⁴Department of Dermatology, University of Sob Paulo Medical School, University of Sub Result, ¹⁴Department of Dermatology, University of Sub Result, ¹⁴Department of Medical School, University of Sub Result, ¹⁴Department of Researdology, Control Researdolog

Brentuximab vedotin or physician's choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial

H Miles Prince^{*}, Youn H Kim^{*}, Steven M Horwitz, Reinhard Dummer, Julia Scarisbrick, Pietro Quaglino, Pier Luigi Zinzani, Pascal Welter, Jose A Sanches, Pablo L Ortiz-Romero, Oleg E Akidov, Larisa Geskin, Judith Trotman, Kerry Taylor, Stephane Dalle, Michael Weichenthal, Jan Walewski, David Fisher, Brigitte Dréno, Rudolf Stadler, Tatyana Feldman, Timothy M Kuzel, Yinghui Wang, Maria Corinna Palanca-Wessels, Erin Zagadalav, William L Trepicchia, Wenwen Zhang, Hui-Min Lin, Yi Liu, Dirk Huebner, Meredith Little, Sean Whittakert, Madeleine Duvict, on behdf of the ALCANZA study group[±]

Prince HM, et al.Lancet.2017;390:555-66.

Response to brentuximab vedotin versus physician's choice by CD30 expression and large cell transformation status in patients with mycosis fungoides: An ALCANZA sub-analysis

Youn H. Kim et al European Journal of Cancer 148 (2021) 411e421

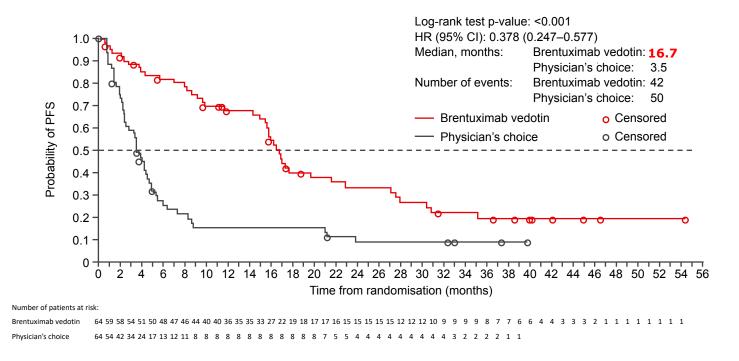
ORR4, best response to treatment, PFS and OS (ITT population)

	Brentuximab vedotin (n=64)	Physician's choice (n=64)	p-value
ORR4 per IRF, n (%)	35 (54.7)*	8 (12.5)	<0.001
Best response to treatment per IRF, n			
(%)	42 (65.6)	13 (20.3)	< 0.001
Overall response (CR + PR)	11 (17.2)	1 (1.6)	0.002
CR	31 (48.4)	12 (18.8)	
PR	10 (15.6)	18 (28.1)	
SD PD	5 (7.8)	22 (34.4)	
Median PFS per IRF, months ⁺	16.7	3.5	<0.001
3-year OS estimates, % (95% CI)	64.4 (50.7-75.2)†	61.9 (47.3-73.6)‡	
	(HR=0.745; 95%	CI: 0.421-1.318)	0.310

*Based on additional information provided to the IRF after the May 31, 2016 data cut-off, the IRF determined that 1 patient had not achieved ORR4 as was originally reported; the change in status was determined through a standard IRF adjudication process. *Median OS follow-up for brentuximab vedotin arm: 48.4 months.

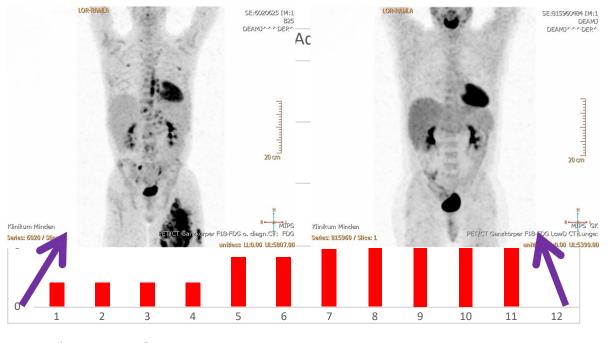
*Median OS follow-up for PC arm: 42.9 months.

CI, confidence interval; CR, complete response; HR, hazard ratio; IRF, independent review facility; ITT, intent-to-treat; ORR4, objective response rate lasting ≥4 months; OS, overall survival; PC: physician's choice; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease.



Reference
 Network
 for rare or low prevalence
 complex diseases

PFS per IRF (ITT population)

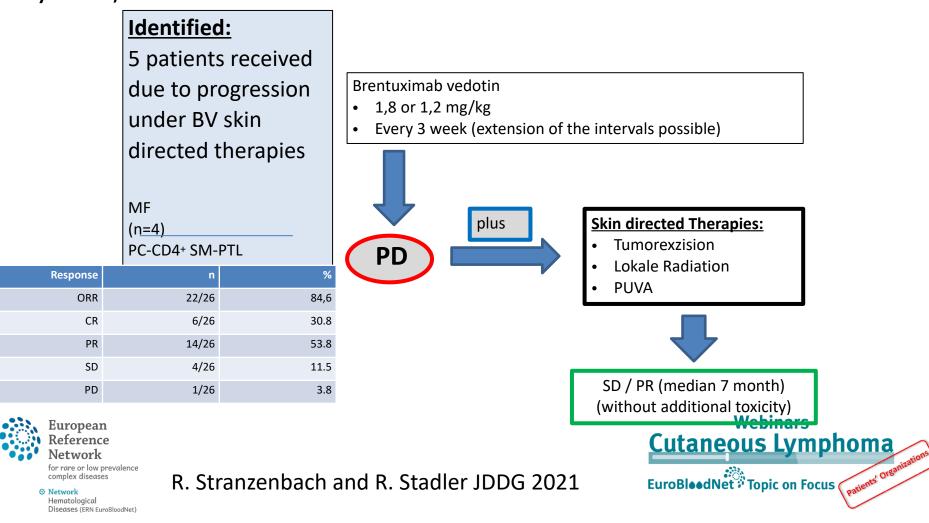

CI, confidence interval; HR, hazard ratio; IRF, independent review facility; ITT, intent-to-treat; PFS, progression-free survival.

CD30-positive, granulomatous Mycosis fungoides

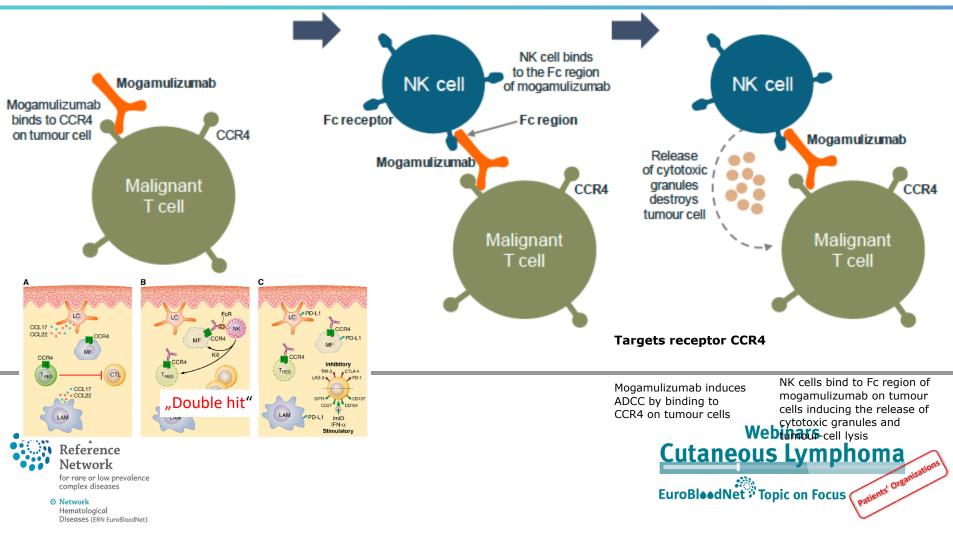
Adcetris®-Infusionen

Brentuximab a novel antibody therapy:real-world use confirms efficacy and tolerability for CD30-positive cutaneous lymphoma s. Engelina ID, M. Saggu, J. Yoo, F. Shah, A. Stevens, c. Irwin, S. Chaganti and J.J. Saristrick BJ 2020 182, 788-818

Patient, sex, age at diagnosis	Diagnosis	Stage prior to BV	BV cycles, n	Weeks, n	CD30%	Response	Previous systemics, 1
1, F, 57	MF	IIB	4	12	10	SD	3
2, M, 60	MF	IIB	9	27	30	CR	3
3, M, 60	MF	IIB	13	39	27	PR	3
4, F, 57	MF	IIIB	7	21	10	CR	4
5, M, 76	MF	IIIB	16	48	100	CR	3
6, M, 47	MF	IVA2	5	15	5	PR	4
7, M, 43	MF	IVA2	9	27	10	PD	4
8, M, 48	MF	IVA2	10	30	100	CR	2
9, F, 50	MF	IVA2	16	48	1.5	PR	1
10, M, 59	pcALCL	T3N0M1	4	12	100	PD	2
11, M, 39	pcALCL	T2cN1M0	6	18	100	CR	1
12, M, 41	pcALCL	T3aN2M0	8	24	100	CR	2


F, female; MF, mycosis fungoides; SD, stable disease; M, male; CR, complete response; PR, partial response; PD, disease progression; pcALCL, primary anaplastic large-cell lymphoma.

Patient characteristics, CD30 status, number of cycles of brentuximab vedotin (BV) received and response achieved



Combination therapy out of 26 patients , median age 67 years,

Mogamulizumab: a humanized anti-CCR4 antibody with a defucosylated Fc region

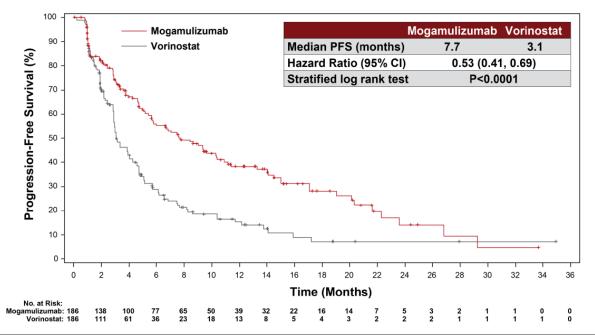
Mogamulizumab

Response outcomes Mogamulizumab Vorinostat ORR^{a,b}, n/N (%) 52/186 (28) 9/186 (5) MFc 22/105 (21) 7/99 (7) SSb 30/81 (37) 2/87 (2) Stage IB/IIA 7/36 (19) 5/49 (10) Stage IIB 5/32 (16) 1/23 (4) Stage III 5/22 (23) 0/16 (0) Stage IV 35/96 (36) 3/98 (3) 14 9 DOR, median, months MF 13 (n=22) 9 (n=7) SS 17 (n=30) 7 (n=2) ORR^a n/N (%) 41/136 (30) mogamulizumab after crossover PORR is the percentage of patients with confirmed CR or confirmed PR; P<0.001; P=0.004.

Median relative dose intensities for mogamulizumab were 97.5% and for vorinostat was 95.1%

ORR=overall response rate; DOR=duration of response.

Dose: The recommended Dose is 1 mg/kg Mogamulizumab as intravenous infusion over at least 60 minutes Application on day 1, 8, 15 und 22 for the first 28-day cycle. Followed every two weeks on day 1 and 15 for the following 28-day cycle.

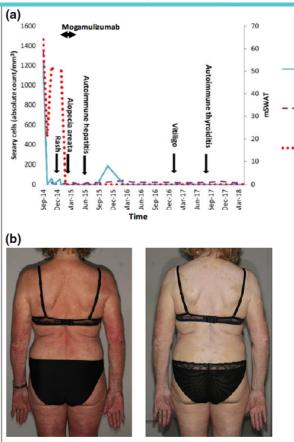


_

Mogamulizumab

Primary endpoint: Progression-free survival (PFS)

Sézary syndrome



Mogamulizumab can induce autoimmunity with long lasting effects

for rare or low prevalence complex diseases

> Network Hematological Diseases (ERN EuroBloodNet)

- 2 out of 21 patients treated at Saint-Louis Hospital developed autoimmunity
- Both patients were treated long-term either with alemtuzumab or gemcitabine and then progressed
- Patient 1 cleared in the blood compartment but not in the skin and received additional doxorubicin, is now three years free of disease
- Patient 2 developed autoimmune haemolytic anaemia, is now 2 years free of disease
- The depletion of CCR4-expressing Tregs is believed to activate cytotoxic T lymphocytes

Association of autoimmunity and long-term remission in patients with Sézary Syndrome treated with mogamulizumab *P. Bonnet Br J Dermatol 2019*

European Journal of Cancer 142 (2021) 58-47

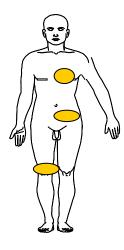
Review

Maintenance therapy in patients with mycosis fungoides or Sézary syndrome: A neglected topic

Rudolf Stadler^{a,*}, Julia J. Scarisbrick^b

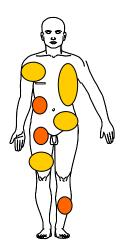
^a University Clinic for Dermatology, Johannes Wesling Medical Centre, Minden, Germany ^b University Hospital Birmingham, Birmingham, United Kingdom

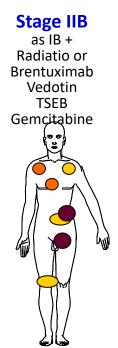
Received 2 August 2020; received in revised form 28 September 2020; accepted 2 October 2020



Concept: Maintenance Therapy

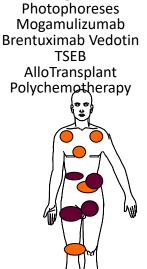
Stage IA I UVB 311; PUVA Chlormethine Gel Steroids


Remission Observation


for rare or low prevalence complex diseases

Network Hematological Diseases (ERN EuroBloodNet) Stage IB PUVA

+ Interferon α Bexarotene TSEB


Remission e.g. PUVA-Interval Therapy, or Bexarotene or Chlormethin Gel Resminostat???

Remission

e.g. PUVA-Interval Therapy or Bexaroten or Interferon *Resminostat?* Stage III PUVA Photophereses +/- IFN α Bexaroten Mogamulizumab TSEB

Stage IV

Remission Bexaroten, IFN-α Photopheresis Resminostat? Remission Bexarotene, Interferon, Resminostat??



Patients' Organ

Study Design

Patients:	 Mycosis fungoides (Stage IIB-IVB) or Sézary Syndrome In disease control (CR;PR;SD) 2-12 weeks after systemic therapy Target N = 190 patients 		
Endpoints:	Primary: PFSKey secondary:Secondary:	Time to symptom worsening (VAS itching) TTP, TTNT, PFS2, PFS3, ORR, DOR, OS, HrQoL, Safety	

Cutaneous Lymphoma: New therapeutic developments

EuroBlood Net Talk 19/07/2021

Agenda

- EORTC/ CTLF Studies : Sponsor: EORTC
 - Completed study
 - 1652 (PARCT) ClinicalTrials.gov : NCT03357224

- Upcoming studies
 - 1754 (REACH) ClinicalTrials.gov : NCT04218825

• 1820 (MOGAT) ClinicalTrials.gov : NCT04128072

• 1636 (PROMPT) ClinicalTrials.gov : open

Completed EORTC/CLTF study

<u>1652-PARCT</u> ClinicaTrials.gov: NCT03357224 Sponsor: EORTC

Phase II trial of atezolizumab (anti-PD-L1) in the treatment of stage IIb-IV mycosis fungoides/Sézary syndrome patients relapsed/refractory after a previous systemic treatment

Primary objective

To determine the antitumor activity of atezolizumab for patients with refractory or relapsed advanced stages of mycosis fungoides and Sézary syndrome, assessed in terms of the overall response rate, according to EORTC-ISCL-USCLC criteria

<u>Translational research</u>

Effect of atezolizumab on PD-1/PD-L1 expression, the tumor infiltrating lymphocyte populations and its activation in the skin.

Upcoming EORTC CLTF studies 1754 REACH ClinicalTrials.gov : NCT04218825 Sponsor: EORTC

Study to determine the aetiology of chlormethine gel induced-skin drug reaction in early stage mycosis fungoides cutaneous T cell lymphoma (MF-CTCL)

Primary objective

To determine activity of the drug as measured by response rate in patients treated with CL gel without skin drug reaction

To determine activity of the drug as measured by response rate in patients treated with CL gel with skin drug reactions and subsequent reduced CL gel application frequency

<u>Translational research</u>

To discriminate between irritant and allergic contact dermatitis as a side effect to CL gel so that guided management of the skin reaction can occur

To assess malignant T-cell behaviour in case of skin reaction to CL gel

Webinars **Cutaneous Lymphoma** EuroBleedNet, Topic on Focus Patterns Organizations

Upcoming EORTC/CLTF studies

<u>1820 MOGAT</u> ClinicalTrials.gov : NCT04128072 Sponsor: EORTC

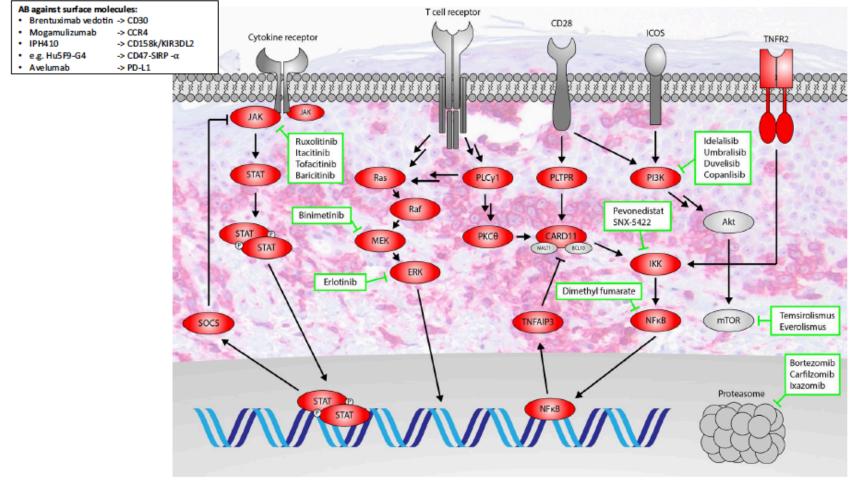
Open-Label, phase II, Multi-Center, study of Anti-CCR4 Monoclonal Antibody (mogamulizumab) Plus Total Skin Electron Beam therapy (TSEB) in patients with stage IB-IIB Cutaneous T-Cell Lymphoma

Primary objective

To evaluate the progression free survival rate at 48 weeks (according to EORTC-ISCL-USCLC criteria) of anti-CCR4 monoclonal antibody (mogamulizumab) and TSEB in IB-IIB cutaneous T-cell lymphoma

• Translational research

To identify factors in the skin and/or blood that can predict response or resistance to mogamulizumab treatment alone or the combination of mogamulizumab + TSEB

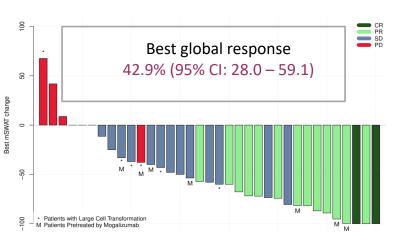


Cutaneous Lymphoma

Future Directions

Network Hematological Diseases (ERN EuroBloodNet) R.Stadler et al Experimental Dermatology. 2020;29:1062–1068.

IPH4102, a first-in-class anti-KIR3DL2 monoclonal antibody, in patients with relapsed or refractory cutaneous T-cell lymphoma: an international, first-in-human, open-label, phase 1 trial


Martine Bagot, Pierluigi Porcu, Anne Marie-Cardine, Maxime Battistella, Basem M William, Maarten Vermeer, Sean Whittaker, Federico Rotolo, Caroline Ram-Wolff, Michael S Khodadoust, Armand Bensussan, Carine Paturel, Cecile Bonnafous, Helene Sicard, Hatem A Azim Jr, Youn H Kim

Lancet Oncol 2019

Enhancing antitumor immunity through checkpoint blockade as therapeutic strategy in T-cell lymphomas

PD-1 inhibition in MF/SS : OR 15-38%, CR 0-8%, 1 year PFS 65%

Pembrolizumab in Relapsed and Refractory Mycosis Fungoides and Sézary Syndrome: A Multicenter Phase II Study

Cutaneous Lymphoma

EuroBleedNet Topic on Focus

Michael S. Khodadoust, MD, PhD¹; Alain H. Rook, MD²; Pierluigi Porcu, MD³; Francine Foss, MD⁴; Alison J. Moskowitz, MD⁵; Andrei Shustov, MD⁶; Satish Shanbhag, MBBS, MPH⁷; Lubomir Sokol, MD, PhD⁸; Steven P. Fling, PhD⁹; Nirasha Ramchurren, PhD⁹; Robert Pierce, MD⁹; Asa Davis, PhD⁹; Richard Shine, PharmD, BCPS⁹; Shufeng Li, MS¹; Sophia Fong¹; Jinah Kim, MD, PhD¹; Yi Yang, MS⁹; Wendy M. Blumenschein¹⁰; Jennifer H. Yearley, DVM, PhD, DACVP¹⁰; Biswajit Das, PhD¹¹; Rajesh Patidar, MS¹¹; Vivekananda Datta, MD, PhD¹¹; Erin Cantu¹¹; Justine N. McCutcheon¹¹; Chris Karlovich, PhD¹¹; P. Mickey Williams, PhD¹¹; Priyanka B. Subrahmanyam, PhD¹; Holden T. Maecker, PhD¹; Steven M. Horwitz, MD⁵; Elad Sharon, MD, MPH¹²; Holbrook E. Kohrt, MD, PhD^{1†}; Martin A. Cheever, MD⁹; and Youn H. Kim, MD¹

- Treatment responses did not correlate with expression of PD-L1, total mutation burden, or an interferon-g gene expression signature.
- Pembrolizumab demonstrated significant antitumor activity with durable responses and a favorable safety workefile

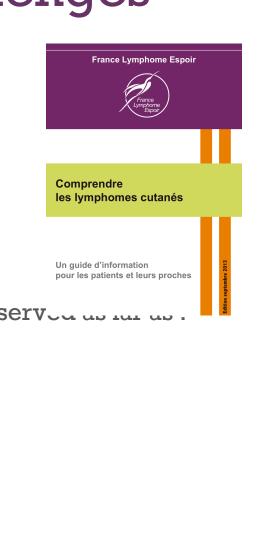
Network for rare or low prevalence complex diseases

- **1.** Stage adapted therapy in close contact with the patient
- **2.** Antibody based therapies improve CTCL therapy
- **3.** Maintenance therapy as an important concept
- 4. A holistic approach to patient care
- **5.** Clinical studies to improve the field

⁺Lymphoma: a 21 year "affair"

- 2000 Delayed Diagnostic
- Chemo, Radio, Interferon....
- 2003 Autologous transplant
- 2005, Allogeneic Transplant
- Life after a transplant: A different Story
 - 10 years + of cGVHD
 - Scleroderma, Fasciitis, eyes dryness
 - Side effects from prior treatments: cardio (5 stents...)

+ Patients Advocacy


- Founded a Non profit organisation, born in 2006
- Born for observation: No Info in France and ignorance
- Our missions are:
 - Information, education et communication for:
 - Provide any type of support during and after treatments in order to facilitate life with Lymphoma
 - Research
 - Advocate for patients with authorities and regulators
- Board member of the Lymphoma Coalition and LC Europe
 - Organization network, experience sharing (CLF, ...)
 - International collaborative work (EBMT, EHA, EORTC...)

LYMPHOMA COALITION

⁺CL: Support and challenges

- Support for patients via:
 - Dedicated phone line
 - **Forum**
 - Meetings
 - Website information
 - brochures
- Challenges:
 - Clearly Cutaneous lymphomas are underserved us in us.
 - Knowledge of the disease
 - Diagnostic process (can take years)
 - Hematology or dermatology?
 - Treatment options and burden
 - Clinical trials
- Social/professional stigmatization

- We recently merged with the French CLL organization SILLC
- We are now known as ELLyE

